RNInfer: A Large Language Model Approach to Functional Harmonic Reasoning in Symbolic Music

Hewei Gao*¹, Tim Beyer¹, Xiaoxuan Wang², Stephan Günnemann¹, Martin Alois Rohrmeier² ¹Technical University of Munich ² École Polytechnique Fédérale de Lausanne

TL;DR

- Roman Numeral Analysis (RNA) is a key tool for analyzing harmonic progression in Western classical music. This study is the first to apply LLMs to RNA.
- We apply RL (e.g., GRPO) to train LLMs as reasoning models, with the goals of:
- validating VLM-like architectures for symbolic music analysis, and
- overcoming the interpretability limitations of traditional classification models.

Training Process

Choice Validation

Model	Position	Group	Both
RNInfer	99.51%	99.74%	99.35%

Table 1: Validation of the MLP projector on the simultaneous-note determination task.

Tokenization	Key Acc. (%)
Octuple (w/o accidental)	77.04
Octuple+ (w/ accidental)	79.46

Table 2: Validation of **Octuple+** on the SFT-Key task using the RNBert encoder.

Key Prediction Confusion Matrix

SFT-RNA Training	Acc. (%)
From Scratch	29.44
With SFT-Key curriculum	49.51

Table 3: Validation of curriculum training in the SFT phase.

Slicing Strategy	Acc. (%)
Measure-based	73.90
Phrase-based	79.46

Table 4: Validation of the phrasebased slicing strategy on the SFT-Key task.

Music Encoder	Acc. (%)
MusicBERT (pre-trained)	21.69
RNBert (fine-tuned)	49.51

Table 5: Validation of the domain-specific fine-tuned music encoder on the SFT-RNA task.

Main Results

SFT-Key Acc. (%) Model **Dataset BPS** 80.33 RNInfer **BPS** 81.50 **RNBert** P.DCML 79.36 RNInfer P.DCML 85.76 **RNBert Table 6:** SFT-Key task accuracy (%) compared to RNBert. RNInfer achieves performance comparable 1 1 to SOTA approaches in the key-prediction task, despite the greater difficulty of its task setting (e.g., enharmonic keys, openended generation.)

- RNInfer implicitly learns tonal relationships, as shown by the distribution of its mispredictions in the confusion matrix:
 - Red dashed line: relative keys Main diagonal: correct predictions
 - Left = subdominant
- Right = dominant,
- Blue dashed line: parallel keys

SFT-RNA

 RNInfer outperforms strong baselines but does not yet surpass RNBert.

Reasons

- Open-ended generation vs. classification.
- 42 enharmonically distinct keys vs. 24 in RNBert.
- Support for more chord types than RNBert.

Model	Training set	Test set	Acc. (%)
RNInfer	P.DCML	BPS	58.3
AugN [2]	AugNData	BPS	45.4
Mi20 [4]	Mi20Data	BPS	42.8
RNInfer (8B)	P.DCML	P.DCML	52.8
RNInfer	P.DCML	P.DCML	49.5
RNBert	P.DCML	P.DCML	64.5

Table 7: Results for the SFT-RNA task. The P.DCML dataset is comparable in size to those used for AugN and Mi20.

RL-RNA

Model	Training Stage	Dataset	Acc. (%)
RNInfer	SFT-RNA	BPS	58.28
RNInfer	RL-RNA	BPS	38.67

Table 8: Accuracy (%) before and after RL-RNA.

 Accuracy decreases, although the average rewards for all three reward functions steadily increase during training.

Main Reason

• The absence of a formal verifier for reasoning-trace validity.

Example

<think>

Step 1: Establish the local key. - The local key is f. There are no significant changes in the key signature or chord progression that would indicate a shift to a different key.

Step 2: Confirm/adjust the harmonic-rhythm.- The harmonic

rhythm is consistent with one chord per bar. **Step 3**: Filter non-chord tones. - No non-chord tones are present.

Step 4: Identify chord quality and state the root-position Roman numeral.- bar 0: i: F-Ab-C, R-T-F - bar 2: V65: C-E-G-Bb, R-T-F-S bar 4: i: F-Ab-C, R-T-F - bar 5: #viio6: E-G-Bb, R-T-F - bar 6: i6: F-Ab-C, R-T-F - bar 6: iio6: G-Bb-Db, R-T-F - bar 7: V: C-E-G, R-T-F bar 8: v: C-Eb-G, R-T-F

Step 5: Determine inversion. - [same output as in Step 4] Step 6: Detect tonicizations/modulations. - No tonicizations or modulations are present.

Step 7: Proof-read & summarise higher-level pattern. - The excerpt is in f, with a progression of i, V65, i, #viio6, i6, iio6, V, v. </think>

