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WITH LARGE LANGUAGE MODELS
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Introduction
Motivation

Humans easily reason about sounds 
Large language models (LLMs) struggle with audio reasoning, unlike
text and vision.
Current methods rely on dense audio embeddings → limited accuracy,
poor interpretability.

Our Work
We propose SAR-LM, a symbolic audio reasoning pipeline.
Converts raw audio into human-readable features: transcripts,
emotions, sound events, music notes/chords.
Enables LLMs to reason over structured inputs, not opaque
embeddings.

Key Contributions
Modular pipeline for symbolic audio reasoning.
Evaluation on MMAU [1] and MMAR [2] benchmarks with competitive
performance.
Interpretability first: exposes why models fail, enabling detailed error
analysis.

SAR-LM Pipeline

Experiments & Results
Setup
Datasets

MMAU: 10k clips, 27 task types (speech, music, environment). Mini-test
set (1k) used with public labels.
MMAR: 1k audio–QA pairs with multi-step reasoning across speech,
music, and mixed audio.

Models Tested
Qwen2.5-Omni [3] – unstable outputs.
Qwen3-Instruct [4] – more stable, moderate accuracy.
Gemini 2.5 Pro [5] – best overall for both captioning & reasoning.

Dynamic Feature Selection
SAR-LM has many possible features (transcripts, events, chords, tags).
Including all can add noise.
We use a GPT-style agent to pick only the relevant ones → Gemini 2.5 Pro
gave stable, meaningful selections, improving reasoning accuracy.

Results
We compare our best configuration (Gemini 2.5 Pro + symbolic features) with
reported baselines, showing clear gains, on both MMAU and MMAR

On MMAU, symbolic features give strong speech and sound performance;
agent-based selection further boosts accuracy, while captions help slightly in
music tasks.

Error Analysis
Example temporal reasoning question: “What was the order of the sounds?”
Correct order: light switch → boiling water → doorbell → clock.
Symbolic pipeline failed (missed first two sounds due to PANNs).
End-to-end captioner succeeded (had full waveform access).
Takeaway: Symbolic reasoning is only as strong as feature extraction.

Conclusion & Future Work
SAR-LM: a modular pipeline for symbolic audio reasoning with LLMs.
Achieves competitive performance on MMAU and MMAR while providing
interpretability to diagnose errors (e.g., missed temporal events).
Limitations: feature extraction is computationally heavy; errors in
transcripts or music transcription can propagate.

Future work:
Improve feature extraction (e.g., universal sound recognition).
Integrate stronger pretrained encoders (e.g., MERT).
Move toward unified feature extraction for both accuracy and
interpretability.
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