

SAR-LM: SYMBOLIC AUDIO REASONING WITH LARGE LANGUAGE MODELS

Termeh Taheri, Yinghao Ma, Emmanouil Benetos

Introduction

Motivation

- Humans easily reason about sounds
- Large language models (LLMs) struggle with audio reasoning, unlike text and vision.
- Current methods rely on dense audio embeddings → limited accuracy, poor interpretability.

Our Work

- We propose SAR-LM, a symbolic audio reasoning pipeline.
- Converts raw audio into human-readable features: transcripts, emotions, sound events, music notes/chords.
- Enables LLMs to reason over structured inputs, not opaque embeddings.

Key Contributions

- Modular pipeline for symbolic audio reasoning.
- Evaluation on MMAU [1] and MMAR [2] benchmarks with competitive performance.
- Interpretability first: exposes why models fail, enabling detailed error analysis.

SAR-LM Pipeline

Experiments & Results

Setup

Datasets

- MMAU: 10k clips, 27 task types (speech, music, environment). Mini-test set (1k) used with public labels.
- MMAR: 1k audio-QA pairs with multi-step reasoning across speech, music, and mixed audio.

Models Tested

- Qwen2.5-Omni [3] unstable outputs.
- Qwen3-Instruct [4] more stable, moderate accuracy.
- Gemini 2.5 Pro [5] best overall for both captioning & reasoning.

Dynamic Feature Selection

- SAR-LM has many possible features (transcripts, events, chords, tags).
 Including all can add noise.
- We use a GPT-style agent to pick only the relevant ones → Gemini 2.5 Pro gave stable, meaningful selections, improving reasoning accuracy.

Results

We compare our best configuration (Gemini 2.5 Pro + symbolic features) with reported baselines, showing clear gains, on both MMAU and MMAR

Method	Sound	Music	Speech	Overall
MMAU (Best)	57.35	49.70	64.86	57.30
Audio-CoT	62.16	55.99	56.16	58.10
Audio-Reasoner	60.06	64.30	60.70	61.71
Ours (Gemini + Symbolic)	73.27	64.97	82.28	73.5
Method	Sound	Music	Speech	Overall
MMAR (Best)	61.21	50.97	72.11	65.6
Ours (Gemini + Symbolic)	52.73	56.31	80.95	69.3

On MMAU, symbolic features give strong speech and sound performance; agent-based selection further boosts accuracy, while captions help slightly in music tasks.

Error Analysis

- Example temporal reasoning question: "What was the order of the sounds?"
- Correct order: light switch → boiling water → doorbell → clock.
- Symbolic pipeline failed (missed first two sounds due to PANNs).
- End-to-end captioner succeeded (had full waveform access).
- Takeaway: Symbolic reasoning is only as strong as feature extraction.

Conclusion & Future Work

- SAR-LM: a modular pipeline for symbolic audio reasoning with LLMs.
- Achieves competitive performance on MMAU and MMAR while providing interpretability to diagnose errors (e.g., missed temporal events).
- Limitations: feature extraction is computationally heavy; errors in transcripts or music transcription can propagate.

Future work:

- Improve feature extraction (e.g., universal sound recognition).
- Integrate stronger pretrained encoders (e.g., MERT).
- Move toward unified feature extraction for both accuracy and interpretability.

Scan QR for CV & Portfolio

References